当前位置:首页英语周报

英语周报八年级外研版第一期答案

作者:admin 时间:2022年10月16日 阅读:36 评论:0

image.png@!test

书面表达One possible versionDear PeterI'm writing to invite you to see the Chinese Painting Exhibition to be held in our city.The exhibition will start at 8: 30 am on Saturday and last till 5: 00 pm on Sunday in the city museum It'ssaid that a large number of Chinese paintings, some of which are original works by famous painters like ZhangDaqian and Qi Baishi, will be on display. Besides, there will be various souvenirs to be sold. I know you re veryinterested in traditional Chinese culture, so I can t wait to tell you the news and hope we can go together.Looking forward to your reply.You

image.png@!testimage.png@!test

19.【考查目标】必备知识:本题主要考查直三棱柱中的线线垂直、二面角的正弦值、空间向量等知识.关键能力:通过线线垂直的证明和二面角的求解考查了空间想象能力、逻辑思维能力和运算求解能力学科素养:理性思维、数学探索【解题思路】(1)先证明BA⊥BC,再利用AB,BC,BB1两两垂直建立空间直角坐标系,求出相关点的坐标,利用向量证明;(2)分别求出面BB1C1C和面DEF的一个法向量,通过求出两法向量夹角的余弦值的最大值来解决解:(1)因为E,F分别是AC和C1的中点,且AB=BC=2所以CF=1,BF=√5.如图,连接AF,由BF⊥A1B1,AB∥AB,得BF⊥AB,于是AF=BF+ABF=3,所以AC=√AF-CF=2.由AB2+BC2=AC2,得BA⊥BC,故以B为坐标原点,以AB,BC,B1所在直线分别为x,y,z轴建立空间直角坐标系B-xy则B(0,0,0),E(1,1,0),F(0,2,1),BF=(0,2,1)设B1D=m(0≤m≤2),则D(m,0,2),于是DE=(1-m,1,-2)所以B.DE=0,所以BF⊥DE(2)易知面BB1C1C的一个法向量为n1=(1,0,0)设面DFE的法向量为n2=(x,y,2),n,又靂=(1-m,1,-2),E=(-1,1,1)所以(1-m)x+y-2z=0-x+y+z=0,令x=3,得y=m+1,z=2-m,于是,面DFE的一个法向量为n2=(3,m+1,2-m),所以cos(n1,n2〉=)2设面BCC与面DFE所成的二面角为6,则in6=√1-m(n1,m2),故当m=时,面BBCC与面DFE所成的二面角的正弦值最小为,即当B1D=时,面BB1C1C与面DFE所成的二面角的正弦值最小.【解題关键】本题求解关键是建立恰当的空间直角坐标系,确定相关点的坐标,再利用空间向量进行运算

英语周报八年级外研版第一期答案

以上就是英语周报八年级外研版第一期答案,更多英语周报答案请关注本网站。

本文地址: http://www.ncneedu.cn/post/9193.html

文章来源:admin

版权声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。

相关推荐
站点信息集合
  • # 站点信息
  • 文章总数:26618
  • 页面总数:1
  • 分类总数:6
  • 标签总数:0
  • 评论总数:516
  • 浏览总数:1394749

本站转载作品版权归原作者及来源网站所有,原创内容作品版权归作者所有,任何内容转载、商业用途等均须联系原作者并注明来源。

鲁ICP备2021000143号-10