S1,S4,S+2或S+3,S1:S1成等差数列18解:(1)当F为线段A1B1的中点时,AF∥平面BEC、…………………n13下面给出证明取AB的中点G,连接BG,B1G,则FB2∥AG,且FB1=AG,所以四边形AGBF为平行四边形所以AF∥B1G,………因为BC=BD,BE⊥CD所以E为CD的中点,林……2分又G为AB的中点,AB∥CD,AB=CD,所以BC∥CE,且BC=CE中多声所以四边形BCG为平行四边形所以BG∥BC,且BG=BC,又BC∥B1C1,BC=BG1PN+++3分所以BG∥BC,且BG=B1C1,所以四边形BGBC1为平行四边形实””界“””电分,所以BG∥CE,所以AF∥CE”内为水失“”“5分又AFG平面BEC1,C1EC平面BEC,所以AF∥平面BBC、…………………6分(2)连接DG因为BD=BC=AD,G为AB的中点所以 DGLAR,又AB∥CD所以DG⊥CD因为DD⊥平面 ABCD DC,DGC平面ABCD,所以DD⊥DC,DD⊥DG,…、17分所以DG,DC,DD1两两垂直,以DCG,DC,DD1分别为x,y,x轴建立如图所示的空间直角坐标系D-xyz(如图所示).由题意知BD=BC=CDAB=AD=2,所以∠DAB=∠BDC=60,又AA1=1,所以D(0,0,0),A(,-1,0),D1(0,0,1),E(0,1,0),C1(0,2,1),AB(3,1,0),F(3,0,1),……………………………8分所以E=(.0,0),=(0,1,1),D=(,-1,0),=(3,0,1)设平画BDC的法向量为n()),则(B,,(x解二,2-1得平面BGlEC的一个法向量n=(0,-1,1),设平面ADF的法向量为m=(a,b,c)则D·m=0,\3a+c=0m=0,w/√3解得√3,令a=1,得b=3,c=3,平面ADF的一个法向量m=(1,3,-3).……………………………………10分设平面ADF和平面BEC1所成的锐二面角的大小为,A cos 0=√7×2所以平面ADF和平面BEC1所成锐角的余弦值为“…“…1分
1A,当P为A的中点时易得DAM⊥ LPD.D,M⊥CD, PDOCD=D∴DM⊥平面PCD·DMC平面MNB1D,∴平面PCD上平面MNB1D易知CD为平面MNB1D的一条斜线故满足平面PCD⊥平面MNBD的点P是唯一的所以P为棱A4的中点CD=4,PD=√2+4=25,PC=√+(2=6∴△CDP的周长为25+10.故选A12.D设AC和BD交于点E,△ACD和△ABC的高分别为1
以上就是英语周报2022九年级新目标(ZYQ)第34期答案,更多英语周报答案请关注本网站。
本文地址: http://www.ncneedu.cn/post/21578.html
文章来源:admin
版权声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。
2023-04-05admin
2023-04-05admin
2023-04-05admin
2023-04-05admin
2023-04-05admin
2023-04-05admin
2023-02-24admin
2023-02-24admin
2023-02-24admin
2023-02-24admin
扫码二维码
获取最新动态